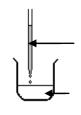
Activité exp 2 classe 1°ST2S Chapitre 11

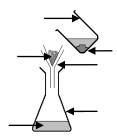
Les constituants du lait

Compétences transversales	Auto évaluation
4-Réaliser ou compléter un schéma permettant de mettre en œuvre un protocole exp.	
5-Réaliser un dispositif exp. correspondant à un protocole donné.	
11-Identifier le risque et respecter les règles de sécurité.	


Objectifs:

- Séparation des constituants du lait.
- Identifications des ions dans le petit lait (tests de reconnaissance).
- Identifications des lipides, glucides et protides dans le caillé.

I- Caillage du lait et séparation des deux phases.


* 1°étape : Caillage du lait.

Placer 100 mL de lait dans un bécher et y ajouter quelques gouttes d'acide éthanoïque. (s'il ne se passe rien, chauffer légèrement)

Compléter le schéma et noter vos observations :	

<u>* 2°étape :</u> séparation. *Filtrer le produit obtenu*

Compléter le schéma.
Sompleton to contental
Nom du filtrat :
Nom du résidu:

II- Les constituants chimiques du lait.

1- Recherche des ions dans le petit lait :

Effectuer les expériences proposées dans le tableau ci dessous : pour cela, verser dans un tube à essais 1 cm³ de solution à tester puis 3 gouttes de réactif, agiter, observer le résultat obtenu puis compléter le tableau.

ion recherché	réactif utilisé	test avec une solution contenant l'ion étudié	test avec le filtrat	l'ion est-il présent ?
Cl ⁻	nitrate d'argent (+)			
K ⁺	acide picrique + chaux sodée			
Ca ²⁺	oxalate d'ammonium $(+ C_2O_4^{2-})$			
Mg ²⁺	hydroxyde de sodium (soude) (+)			
SO 4 ²⁻	chlorure de baryum (Ba ²⁺ +)			
PO ₄ 3-	réactif nitromolybdique	précipité jaune	précipité jaune	

2- Analyse du résidu :

a) Recherche des glucides avec la liqueur de Fehling :

Mettre 1 mL de liquide ou un fragment de composé à tester dans un tube à essais puis ajouter quelques gouttes de liqueur de Fehling. Chauffer à l'aide d'un bec Bunsen.

Schématiser l'expérience positive (avec le lactose) et noter vos observations dans le tableau :

Schéma :			
Gonoma .	lactose	eau (témoin)	caillé

Conclure:

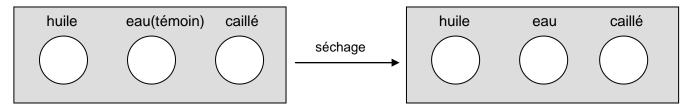
b) Recherche des protides avec la réaction de biuret :

Mettre 1 mL de liquide ou un fragment de composé à tester dans un tube à essais puis ajouter 0,5 mL de sulfate de cuivre $(Cu^{2+} + SO_4^{2-})$ puis 0,5 mL de soude $(Na^+ + OH^-)$.

Schématiser l'expérience positive (avec la solution protidique) et noter vos observations dans le tableau :

Schéma :		

Solution protidique	eau (témoin)	caillé
		Test positif?


Conclure:

c) Recherche des lipides :

1° méthode : à l'aide d'un papier.

Mettre une goutte d'huile, une goutte d'eau et écraser un peu de caillé sur un même morceau de papier. Envoyer de l'air chaud à l'aide d'un sèche-cheveux sur ce papier.

Compléter le schéma de l'expérience :

Conclure:

2° méthode : à l'aide du Soudan III.(pour les plus rapides...)

Le Soudan III colore les lipides en rouge.

Observer au microscope 1 goutte ou un petit fragment de composé à tester auquel on a ajouté 1 goutte de Soudan III.

Dessiner et décrire ce que vous observez.

III- Conclusion: Quels sont les constituants chimiques contenus dans :

- Le petit lait?